任你躁在线精品免费

  • <dd id="pvl2o"><big id="pvl2o"></big></dd>

    <tbody id="pvl2o"><track id="pvl2o"></track></tbody>
    <s id="pvl2o"><legend id="pvl2o"></legend></s>

    1. <dd id="pvl2o"></dd>

        <dd id="pvl2o"><center id="pvl2o"><video id="pvl2o"></video></center></dd>
        <em id="pvl2o"><ruby id="pvl2o"><u id="pvl2o"></u></ruby></em>

        1. 举报文档 收藏
          /30
          帮帮创意 > 办公管理 > 《运筹学》复习参考资料知识点及习题28页.doc

          《运筹学》复习参考资料知识点及习题28页.doc

          《运筹学》复习参考资料知识点及习题28页.doc
          内容要点:
          第一部分 线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。定义:达到目标的可行解为最优解。㈡图解法:图解法采用直角坐标求解:x 1——横轴;x 2——竖轴。1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线) ,确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。4、确定最优解及目标函数值。㈢参考例题:(只要求下面这些有唯一最优解的类型)例 1:某厂生产甲、乙两种产品,这两种产品均需在 A、B 、C 三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:A B C 利润(万元)甲乙3 5 99 5 37030有效总工时 540 450 720 ——问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?设备消耗产品(此题也可用“单纯 形法”或化“对 偶问题”用大 M 法求解)解:设 x1、x 2 为生产甲、乙产品的数量。max z = 70x1+30x2s.t. ???????0723945502112xx,可行解域为 oabcd0,最优解为 b 点。由方程组解出 x1=75,x 2=15?????720394551x∴X *= =(75,15 ) T??????2x∴max z =Z *= 70×75+30×15=5700⑴⑵⑶⑷⑸、⑹例 2:用图解法求解max z = 6x1+4x2s.t. ???????078022112xx,解:可行解域为 oabcd0,最优解为 b 点。由方程组解出 x1=2,x 2=6?????810212x∴X *= =(2,6) T??????1x∴max z = 6×2+4×6=36⑴⑵⑶⑷⑸、⑹例 3:用图解法求解min z =-3x 1+x2s.t. ????????08215341121xx,解:可行解域为 bcdefb,最优解为 b 点。由方程组 解出 x1=4, x2=?????125241x 54∴X *= =(4, ) T??????2x∴min z =-3×4+ =-1151⑴⑵⑶⑷⑸⑹、⑺二、标准型线性规划问题的单纯形解法:㈠一般思路:1、用简单易行的方法获得初始基本可行解;2、对上述解进行检验,检验其是否为最优解,若是,停止迭代,否则转入 3;3、根据 θ L 规则确定改进解的方向;4、根据可能改进的方向进行迭代得到新的解;5、根据检验规则对新解进行检验,若是最优解,则停止迭代,否则转入 3,直至最优解。㈡具体做法(可化归标准型的情况):设已知max z = c1x1+ c2x2+…+ cnxns.t. ?????????njxbxaaxbxaaj mmn,,,, .210....21 22212 11对第 i 个方程加入松弛变量 xn+i,i =1,2,…,m ,得到??????? ?????njx bxxaabxaaj mnmmnn,,,, .210....21 22212 11列表计算,格式、算法如下:c1 c2 … cn+mCB XB bx1 x2 … xn+mθLcn+1 xn+1 b1 a11 a12 … a1 n+mc n+2 xn+2 b2 a21 a22 … a2 n+m........

          发表评论

          暂无评论,赶快抢占沙发吧。

          ba****4

          推荐内容

          在线客服
          写作定制

          扫一扫微信联系老师

          招募写手

          写手微信联系老师

          任你躁在线精品免费